Torus Construction
نویسندگان
چکیده
The maximally compact representation of a regular orbit is in terms of its action-angle variables (J, θ). Computing the map between a trajectory's Cartesian coordinates and its action-angle variables is called torus construction. This article reviews various approaches to torus construction and their application to galactic dynamics.
منابع مشابه
Investigation of the prevalence of Torus Mandibularis and Torus palatinus in Attendants of rafsanjan Dental school
the prevalence of Torus palatinus and Torus Mandibularis is widely different in various populations and races.this descriptive study was performed in 1999,to investigate the the prevalence of Torus Mandibularis and Torus palatinus in patients referring to Rafsanjan dental school.584 patients(268 men and 316 women) which were over 18 years old were examined.the information recorded in the questi...
متن کاملConstruction of Edge-Disjoint Spanning Trees in the Torus and Application to Multicast in Wormhole-Routed Networks
A tree-based multicast algorithm for wormhole-routed torus networks, which makes use of multiple edge-disjoint spanning trees is presented. A technique for constructing two spanning trees in 2-dimensional torus networks is described. It is formally proven that this construction produces two edge-disjoint spanning trees in any 2-D torus network. Compared with an algorithm for construction of mul...
متن کاملA Statistical Study of two Diffusion Processes on Torus and Their Applications
Diffusion Processes such as Brownian motions and Ornstein-Uhlenbeck processes are the classes of stochastic processes that have been investigated by researchers in various disciplines including biological sciences. It is usually assumed that the outcomes of these processes are laid on the Euclidean spaces. However, some data in physical, chemical and biological phenomena indicate that they cann...
متن کاملT-duality for Principal Torus Bundles
In this paper we study T-duality for principal torus bundles with H-flux. We identify a subset of fluxes which are T-dualizable, and compute both the dual torus bundle as well as the dual H-flux. We briefly discuss the generalized Gysin sequence behind this construction and provide examples both of non T-dualizable and of T-dualizable H-fluxes.
متن کاملLagrangian Torus Fibration of Quintic Calabi-yau Hypersurfaces I: Fermat Quintic Case
In this paper we give a construction of Lagrangian torus fibration for Fermat type quintic Calabi-Yau hypersurfaces via the method of gradient flow. We also compute the monodromy of the expected special Lagrangian torus fibration and discuss structures of singular fibers.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999